(1) Find the radius and interval of convergence.
(a) $\sum_{n=1}^{\infty} \frac{x^{2 n}}{(2 n)!}$ didincless

$$
\begin{aligned}
& L= \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2(n+1)}}{(2(n+1))!} \cdot \frac{(2 n)!}{x^{2 n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2 n t^{2}}}{(2 n+2)!} \cdot \frac{(2 n)!}{x^{2 n}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{x^{2 n+^{2}}}{(2 n+2)(2 n+1)(2 n)!} \cdot \frac{(2 n)!}{x^{2 n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2}}{(2 n+2)(2 n+1)}\right|=0 \text { for ell } x \\
& R=\infty,(-\infty, \infty)
\end{aligned}
$$

(b) $\sum_{n=1}^{\infty} \frac{8^{n}}{n}(x-2)^{n}$

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{8^{n+1}(x-2)^{n+1}}{n+1} \frac{n}{8^{n}(x-2)^{n}}\right|=\lim _{n \rightarrow \infty} 8 n_{n}^{n+y}|x-2|=8|x-2|
$$

If $L<1$, series is A.C. $\quad 8|x-2|<1 \Rightarrow|x-2|<\frac{1}{8}=R$

$$
\left\{\begin{array}{l}
X=\frac{15}{8} \quad \sum_{n=1}^{\infty} \frac{8^{n}}{n}(x-2)^{n}=\sum \frac{8^{n}}{n}\left(-\frac{1}{8}\right)^{n}=\sum \frac{(-1)^{n}}{n} \text { conc }-\frac{1}{8}<x-2<1 / 8 \\
X=\frac{17}{8} \sum_{L} \frac{8^{n}}{n}\left(\frac{1}{8}\right)^{n}=\sum \frac{1}{2} \Delta_{1 v} \\
L=1 \\
\text { (c) } \sum_{n=1}^{\infty} n!(x+4)^{n}
\end{array}\right.
$$

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!(x+4)^{n+1}}{n!(x+4)^{n}}\right|=\lim _{n \rightarrow \infty}|n+1|(x+4)=\infty
$$

for all x except $x=-4$. When $x=-4$, series is $\sum_{n=1}^{\infty} n!(0)^{n}=0$, so converges of $x=-4$ only

$$
R=0
$$

(2) Use the definition of a Taylor series to find the first four nonzero terms of the series for $f(x)=\tan x$ centered at $a=\frac{\pi}{4} \quad$ Durectly :

$$
f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+
$$

(5 points)

	at x	at $x=a=\frac{\pi}{4}$
f	$\tan x$	1
f^{\prime}	$\sec ^{2} x$	2
$f^{\prime \prime}$	$2 \sec ^{2} x \tan x$	4
$f^{\prime \prime \prime}$	$4 \sec ^{2} x \tan ^{2}+2 \sec ^{4} x$	16
f^{n}	$f^{n}(x)=$	$f^{n}(0)=$

$$
\begin{aligned}
& 1+2\left(x-\frac{\pi}{4}\right)+2\left(x-\frac{\pi}{4}\right)^{2}+\frac{8}{3}\left(x-\frac{\pi}{4}\right)^{3}
\end{aligned}
$$

2) Find the Taylor series for $f(x)=\cos x$ centered at $a=\frac{\pi}{2}$ using the definition. Express in summation

	at x	at $x=a=\pi / 2$
f	$\cos x$	0
f^{\prime}	$-\sin x$	-1
$f^{\prime \prime}$	$-\cos x$	0
$f^{\prime \prime \prime}$	$\sin x$	1
	$\cos x$	0
f^{n}	$f^{n}(x)=$	$f^{n}(0)=$

(7 points)

$$
\begin{aligned}
\cos k & =-\left(x-\frac{\pi}{2}\right)+\frac{1}{3!}\left(x-\frac{\pi}{2}\right)^{3}+\frac{1}{5!}\left(x-\frac{\pi}{2}\right)^{5}+ \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n+1}\left(x-\frac{\pi}{2}\right)^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

$$
f(x)=f(\square)+f^{\prime}(a)(x-a)+\frac{(\infty)}{2!}(x-a)^{2}+\frac{f^{n \prime \prime}(a)}{3!}(x-a)^{3}+\frac{\left.f^{(} x\right)}{4!}(x-a)^{4}+\cdots=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

